A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion

نویسندگان

  • Serena Dipierro
  • Enrico Valdinoci
چکیده

Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of “smoothing” the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Though an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. The paper is written in such a way to be usable by both the communities of biologists and mathematicians: to this aim, full explanations of the object considered and detailed lists of references are provided.

منابع مشابه

A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells

‎In this paper‎, ‎we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells‎. ‎We study the effect of ‎the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of‎ ‎the presented model‎. ‎ ‎The nonstandard finite difference (NSFD) scheme is implemented‎ ‎to study the dynamic behaviors in the fractional--order HIV-1‎ ‎...

متن کامل

GRUNWALD-LETNIKOV SCHEME FOR SYSTEM OF CHRONIC MYELOGENOUS LEUKEMIA FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL OF DRUG TREATMENT

In this article, a mathematical model describing the growth orterminating myelogenous leukemia blood cancer's cells against naive T-celland eective T-cell population of body, presented by fractional dierentialequations. We use this model to analyze the stability of the dynamics, whichoccur in the local interaction of eector-immune cell and tumor cells. Wewill also investigate the optimal contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017